

Center for the Assessment of Tobacco Regulations [CAsToR]

This research was funded by FDA-NIH U54CA229974; NIH/NCI U01CA253858; NIH/NCI R01CA249506.					
Please add "yes" or "no" to each table cell. If "yes", please turn	Tobacco Industry	E-cigarette & nicotine product industry	Pharma Industry		
cell background color to yellow.The work being presented hasreceived funding or other means		(excluding pharma)			
of support from any of the	No	No	No		

following sources: Any of the authors have received funding (including consultancy) from any of the following sources in the past 5 years:

	(excluding pharma)	
No	No	No
No	No	No

INTRODUCTION

- Lung cancer (LC) incidence has been decreasing in the US overall, largely due to declining smoking trends.
- Adenocarcinoma incidence has been relatively stable compared to the other histological subtypes until recently, causing its proportion among lung cancer cases to increase.
- Trends of histology-specific lung cancer incidence vary by sociodemographic characteristics. It is critical to understand the extent and trends of these variations.

METHODS

- Data: Surveillance, Epidemiology, and End Results (SEER) 17 registry over 2000-2019, which covers approximately 27 percent of the US population
- Trends in annual age-adjusted lung cancer incidence were assessed using the Joinpoint regression
- Histological subtypes: Small cell, Squamous cell, Adenocarcinoma, Other cell
- Urbanicity: US counties stratified by the Rural-Urban Continuum Codes

Trends of Lung Cancer Incidence by Histology and Sociodemographic Characteristics in the US from 2000-2019

Jihyoun Jeon, Pianpian Cao and Rafael Meza

METHODS (continued)

- Race/ethnicity: Non-Hispanic White (NH-White), Non-Hispanic Black (NH-Black), Non-Hispanic American Indian and Alaska Native (NH-AI/AN), Non-Hispanic Asian or Pacific Islander (NH-API), and Hispanic
- Education levels: US counties grouped in quartiles of the percentage of people who are 25 or older and have at least bachelor's degree based on the American Community Survey (ACS)
- Poverty levels: US counties grouped in quartiles of the percentage of persons at above the federal poverty line based on the ACS

RESULTS AND DISCUSSION

- Despite the general declines in LC incidence across racial/ethnic groups, except for adenocarcinoma in females, the extent of decreases varied, and racial differences remain, with NH-White, NH-Black, and NH-AIAN having the largest incidence still.
- Small cell and squamous cell LC incidence have been decreasing in all counties, with faster declines in males vs. females and in more educated or wealthier counties.
- LC incidence has been decreasing in both urban and rural areas for all histological subtypes, with faster declines in urban than rural areas, except adenocarcinoma.
- The relative rate of LC incidence in rural vs. urban counties is generally increasing for all histological subtypes.
- **Differences in LC incidence trend by histology** provide some insights for broader sociodemographic and regional inequalities.

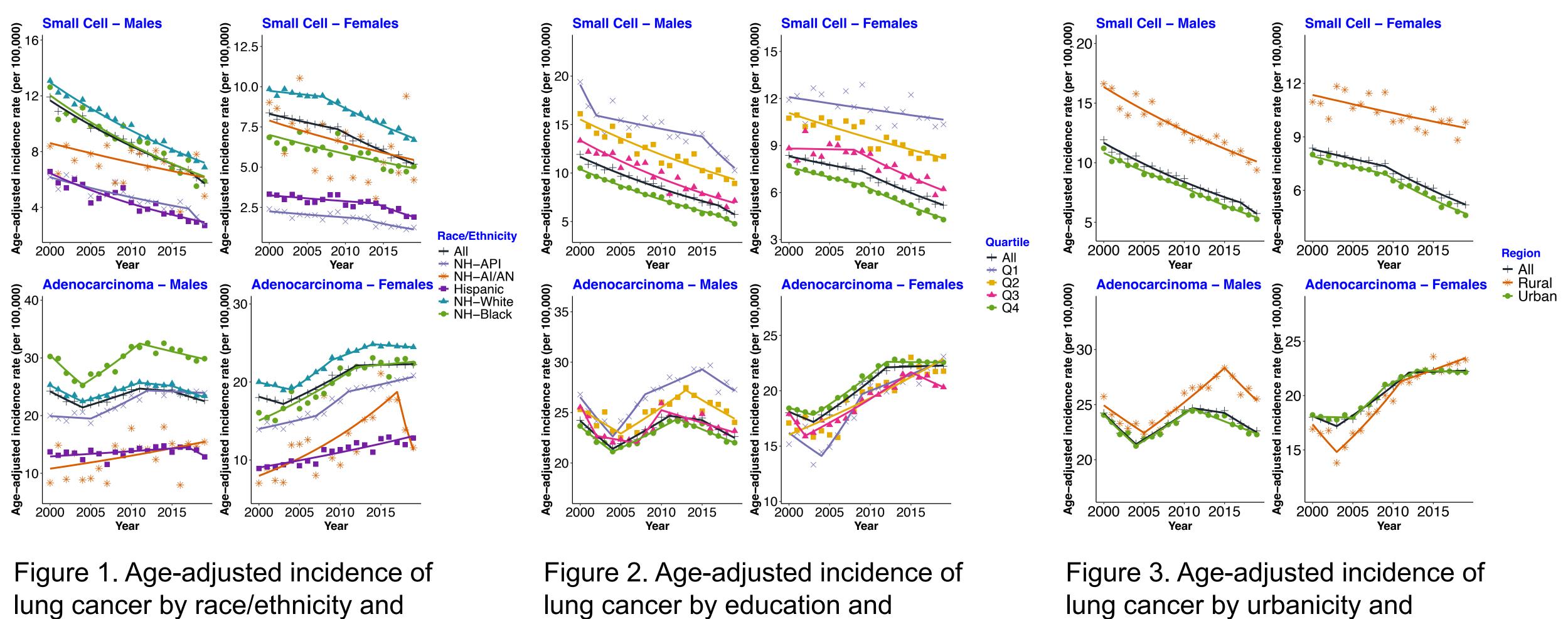

RESULTS

Table 1. Annual Percent Change (APC) and its 95% confidence interval (CI) in age-adjusted lung adenocarcinoma incidence by histology and race/ethnicity in US females.

	Trend 1		Trend 2		Trend 3		Trend 4	
	Year	APC (95% CI)	Year	APC (95% CI)	Year	APC (95% CI)	Year	APC (95% CI)
NH-White	2000-2004	-1.2 (-1.8, -0.5)*	2004-2009	3.7 (3.2, 4.5)*	2009-2014	1.7 (1.0, 2.3)*	2014-2019	-0.3 (-0.9, 0.1)
NH-Black	2000-2012	3.2 (2.4, 7.9)*	2012-2019	0.5 (-4.8, 1.9)				
NH-AI/AN	2000-2017	5.2 (2.9, 22.8)*	2017-2019	-22.4 (-40.6, 3.7)				
NH-API	2000-2007	1.6 (-2.0, 2.8)	2007-2011	4.7 (2.1, 6.8)*	2011-2019	1.2 (0.2, 1.9)*		
Hispanic	2000-2019	2.0 (1.4, 2.7)*						

Table 2. Annual Percent Change (APC) and its 95% confidence interval (CI) in age-adjusted lung adenocarcinoma incidence by histology and urbanicity in US females.

	Trend 1		Trend 2		Trend 3		Trend 4	
	Year	APC (95% CI)	Year	APC (95% CI)	Year	APC (95% CI)	Year	APC (95% CI)
Rural	2000-2003	-5.2 (-10.8, -1.0)*	2003-2011	4.7 (3.7, 8.2)*	2011-2019	1.2 (-0.2, 2.0)		
Urban	2000-2005	-0.1 (-1.1, 0.5)	2005-2009	3.7 (2.8, 4.9)*	2009-2013	1.7 (0.6, 2.6)*	2013-2019	-0.1 (-0.7, 0.2)

lung cancer by race/ethnicity and gender.

gender.

gender.