Modeling from the margins to the masses: Perspectives on commercial tobacco and health equity

March 3rd, 2023
SRNT 2023 - San Antonio, TX

Jamie Tam, MPH, PhD
Assistant Professor
Department of Health Policy and Management

Yale SCHOOL OF PUBLIC HEALTH
Disclosures

No conflicts of interest to disclose.
Acknowledgments

Land

• New Haven exists on Wappinger, Quinnipiac, Paugussett land
• San Antonio exists on Tonkawa, Coahuiltecan, Jumanos, Ndé Kónitsqáíí Gókíyaa (Lipan Apache) land

Funding

• F31 DA041083, K01 DA056424 (NIDA)e
• U01 CA253858, U01 CA199284 (NCI) - CISNET
• U54 CA229974 (NCI) - TCORS / CAsToR

• The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health
Tobacco simulation models and health equity

- Monitor and forecast trends in commercial tobacco use disparities over time
- Evaluate and compare ‘what-if’ intervention scenarios and their short and long-term impacts
- Investigate underlying dynamics that influence disparities
- Identify intervention strategies that have the greatest potential to achieve health equity goals

Health equity objectives

1. WHO: “the absence of unfair and avoidable or remediable differences in health among population groups defined socially, economically, demographically or geographically”

2. Healthy People 2030: “the attainment of the highest level of health for all people”

3. “efforts to impact the determinants of health, reduce health disparities, and work toward health equity cannot fully be understood without the use of metrics. Measurement can also offer indication of what interventions best address disparities, their determinants, and ultimately impact progress toward equity.”

1. Reduce health inequities between the most and least harmed

2. Maximize the health of groups disproportionately harmed

3. Build data infrastructure to monitor health equity progress
1. Reduce inequities between the most and least harmed

- People with Serious Psychological Distress (SPD) comprise 3.7% of the US adult population
 - Kessler-6 item scale screens for serious mental illness in general population
 - Scores ≥13 = SPD
 - Scores <13 = No SPD.
- Current smoking by SPD status

<table>
<thead>
<tr>
<th>2021</th>
<th>Total</th>
<th>SPD</th>
<th>No SPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>13.1%</td>
<td>32.5%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Women</td>
<td>10.1%</td>
<td>15.7%</td>
<td>9.3%</td>
</tr>
</tbody>
</table>

Life expectancy reduction by smoking and SPD status at age 40

- Former smoking, no SPD: 3.4
- Current smoking, no SPD: 8.8
- Never smoked, SPD: 5.3
- Former smoking, SPD: 9.1
- Current smoking, SPD: 14.9

Modeling smoking among people with and without SPD

- Populations modeled separately based on proportion with and without SPD by gender and age group in NHIS
- Dynamics of psychological distress not modeled
- CISNET annual initiation and cessation probabilities by age, gender, birth cohort
 - Calibrated for the SPD population

- Smoking-attributable deaths
 $$\sum_{a,g} P (prev_{cs} \times (\mu_{cs} - \mu_{ns}) + prev_{fs} \times (\mu_{fs} - \mu_{ns}))$$

- Years of life lost
 $$e_{ns,a,g} \times SAD_{a,g}.$$
Smoking among people with and without serious psychological distress (SPD)

How will smoking disparities by SPD status change over time?

<table>
<thead>
<tr>
<th>Year</th>
<th>SPD smoking prevalence</th>
<th>Non-SPD smoking prevalence</th>
<th>Absolute difference</th>
<th>Relative difference</th>
<th>Prevalence ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>27.0%</td>
<td>9.4%</td>
<td>17.6%</td>
<td>1.9</td>
<td>2.9</td>
</tr>
<tr>
<td>2040</td>
<td>17.0%</td>
<td>5.4%</td>
<td>11.6%</td>
<td>2.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2060</td>
<td>12.0%</td>
<td>3.6%</td>
<td>8.4%</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>2080</td>
<td>10.9%</td>
<td>3.2%</td>
<td>7.7%</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>2100</td>
<td>10.7%</td>
<td>3.1%</td>
<td>7.6%</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Change from 2023-2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>SPD smoking prevalence</th>
<th>Non-SPD smoking prevalence</th>
<th>Absolute difference</th>
<th>Relative difference</th>
<th>Prevalence ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>30.1%</td>
<td>11.5%</td>
<td>18.2%</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>2040</td>
<td>18.7%</td>
<td>6.3%</td>
<td>12.0%</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2060</td>
<td>13.6%</td>
<td>4.5%</td>
<td>9.6%</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2080</td>
<td>12.5%</td>
<td>4.1%</td>
<td>8.4%</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2100</td>
<td>12.2%</td>
<td>4.0%</td>
<td>7.6%</td>
<td>2.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Change from 2023-2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Reduce inequities between the most and least harmed

- Whether smoking-related disparities will improve or worsen over time depends on what type of metric is used
 - Absolute metrics: overall population trends
 - Relative metrics: fairness as principle
- Health equity, in relative terms, is a moving target if advantaged groups continue to benefit from tobacco control progress
- Both absolute and relative metrics should be used
2. Maximize the health of groups disproportionately harmed

• Maximum Potential Reduction in Premature Mortality (MPRPM)
 ○ All individuals who smoke immediately quit in 2024
 ○ No new smoking initiation occurs from 2023 to 2100.

What is the relative contribution of prevention vs cessation to the MPRPM?

• No Initiation
 ○ No new smoking initiation occurs from 2023 to 2100
 ○ Cessation rates remain unchanged

• Complete Cessation = MPRPM – No Initiation

Smoking among people with and without serious psychological distress (SPD)

Smoking among people with and without serious psychological distress (SPD)

A) Women with SPD vs. No SPD

B) Men with SPD vs. No SPD

Complete Cessation
The impact of cessation on mortality reductions

<table>
<thead>
<tr>
<th>Year</th>
<th>Cumulative premature deaths averted</th>
<th>Cumulative life-years gained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No-Initiation scenario</td>
<td>MPRPM scenario</td>
</tr>
<tr>
<td>2030</td>
<td>0</td>
<td>22,209</td>
</tr>
<tr>
<td>2040</td>
<td>1</td>
<td>79,510</td>
</tr>
<tr>
<td>2050</td>
<td>20</td>
<td>152,795</td>
</tr>
<tr>
<td>2060</td>
<td>843</td>
<td>221,366</td>
</tr>
<tr>
<td>2070</td>
<td>6,531</td>
<td>275,751</td>
</tr>
<tr>
<td>2080</td>
<td>21,484</td>
<td>318,331</td>
</tr>
<tr>
<td>2090</td>
<td>43,066</td>
<td>353,509</td>
</tr>
<tr>
<td>2100</td>
<td>69,868</td>
<td>385,513</td>
</tr>
</tbody>
</table>
Smoking among people with major depressive episodes

- 8.4% of US adults with Current Major Depressive Episode (MDE)
 - 21.0 million adults
 - Men: 6.1%
 - Women: 10.5%
- MDE = 2 week+ period during which the respondent reports experiencing at least 5 of 9 symptoms (DSM-IV/5) in the past year
 - No exclusions due to illness, mourning, substance use disorders, or other psychiatric disorder
- Past 30-day cigarette smoking prevalence by MDE status

<table>
<thead>
<tr>
<th></th>
<th>Total, Ages 18+</th>
<th>Current MDE</th>
<th>Never MDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>17.5%</td>
<td>24.4%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Women</td>
<td>14.6%</td>
<td>22.4%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

- Most public and private mental health settings do not offer smoking cessation treatment
 - 37.6% report offering cessation counseling
 - 25.2% report offering NRT

Cessation treatment in mental health settings

- Systematic review of cessation treatment RCTs among patients with MD evaluated long-term cessation:
 - Pharmacological Treatment Risk Ratio = 1.588 (95% CI: 1.230-2.049)
 - Varenicline, nicotine gum, fluoxetine, bupropion, nicotine patch

- Evaluate and quantify the potential missed opportunity for tobacco control by modeling ‘what if’ scenarios:
 - Cessation treatment used by all patients in mental health settings?
 - Increased mental health service and cessation treatment utilization?
 - Cessation treatments became more effective?

- Compare best case ‘treatment’ scenarios with best case ‘cessation’ scenario
 - Maximum Potential Cessation (MPC) scenario

Model development and calibration
Major Depression and Smoking (MDS) model

Model projections under baseline scenario

Current smoking is defined as smoking at all within the past year and smoking at least 100 lifetime cigarettes. This models permanent smoking cessation and accounts for high rates of relapse within the first year of quitting. Model calibrated to NSDUH 2005-2019 data.
Current smoking is defined as smoking at all within the past year and smoking at least 100 lifetime cigarettes. This models permanent smoking cessation and accounts for high rates of relapse within the first year of quitting. Model calibrated to NSDUH 2005-2019 data.
Mental health service utilization

Proportion of current smoking adults with MDEs who self-report seeing a health professional for their depression

<table>
<thead>
<tr>
<th>Age group</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-25</td>
<td>49.6%</td>
<td>37.5%</td>
</tr>
<tr>
<td>26-34</td>
<td>62.3%</td>
<td>44.8%</td>
</tr>
<tr>
<td>35-49</td>
<td>70.7%</td>
<td>54.1%</td>
</tr>
<tr>
<td>50-64</td>
<td>73.3%</td>
<td>66.1%</td>
</tr>
<tr>
<td>65+</td>
<td>67.6%</td>
<td>59.0%</td>
</tr>
<tr>
<td>Total</td>
<td>65.8%</td>
<td>51.3%</td>
</tr>
</tbody>
</table>
Intervention scenarios, 2024-2100

Current smoking is defined as smoking at all within the past year and smoking at least 100 lifetime cigarettes. This models permanent smoking cessation and accounts for high rates of relapse within the first year of quitting. Model calibrated to NSDUH 2005-2019 data.
Intervention outcomes for adults with MDEs, 2024-2100

<table>
<thead>
<tr>
<th>2024-2100</th>
<th>Mental health service utilization</th>
<th>Cessation treatment intervention (% of MPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pharm Tx (58.8% increase)</td>
<td>100% increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150% increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200% increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPC</td>
</tr>
<tr>
<td>Premature deaths avoided (thousands)</td>
<td>No change from baseline</td>
<td>98 (19.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 (29.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 (39.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>239 (47%)</td>
</tr>
<tr>
<td></td>
<td>Increase by 10%</td>
<td>106 (19.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>161 (30.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>215 (40.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>257 (48%)</td>
</tr>
<tr>
<td></td>
<td>Increase by 20%</td>
<td>115 (20.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175 (31.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>232 (41.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>277 (49.3%)</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>158 (23.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>237 (35.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>310 (46.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>365 (55.2%)</td>
</tr>
<tr>
<td>Life years gained (millions)</td>
<td>No change from baseline</td>
<td>0.4 (18.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7 (28.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9 (38.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1 (46.2%)</td>
</tr>
<tr>
<td></td>
<td>Increase by 10%</td>
<td>0.5 (19.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7 (29.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (39.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 (47.1%)</td>
</tr>
<tr>
<td></td>
<td>Increase by 20%</td>
<td>0.5 (19.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8 (30.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (40.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 (48.2%)</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.7 (23.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1 (34.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 (45.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7 (54%)</td>
</tr>
</tbody>
</table>

E-cig vs NRT for cessation: RR=1.63 (1.30-2.04)
2. Maximize the health of groups disproportionately harmed

- Cessation improvements achieve largest health gains compared to initiation
- Smoking projections influenced by underlying dynamics in populations of interest
 - Unclear whether rising MDEs among young adults are period vs cohort effects
- Health gains from cessation treatments are modest even under highly optimistic conditions
 - Providing cessation treatment to patients with MDEs would reduce smoking-related mortality
 - But cessation treatments need to be much more effective
- Bolder strategies are needed to complement treatment interventions
 - Pharmacological interventions are necessary but not sufficient to achieve health equity goals
3. Build data infrastructure to monitor health equity progress

• Smoking prevalence alone is not the most informative
 ○ Comprised of distinct behaviors addressed through different intervention strategies:
 ○ Initiation, cessation, smoking intensity, transition behaviors

• Changing patterns by birth cohort are essential to understand both past and future

• Detailed data necessary for population models of disparate groups are often lacking

• Cancer Intervention and Surveillance Modeling Network (CISNET) age, period, and cohort analyses generates detailed smoking histories used in many tobacco simulation models
Age-Period-Cohort Analyses

- NHIS 1965-2018
- APC logistic regression models
- Temporal APC effects modeled using constrained natural splines
- Smoking initiation, cessation, intensity, prevalence, duration by age, year, gender, and birth cohort
- Parameters ready-for-use as inputs to simulation models
Extensions of the Age-Period-Cohort Framework for US Population Smoking Histories

Race/Ethnicity

50 States + DC

- NHIS 1965-2018
 - Age effects for ever smoking
- TUS-CPS 1992-2019
 - Variation in smoking histories by state

Educational attainment

apps.cisnetsmokingparameters.org/education/

Family income

apps.cisnetsmokingparameters.org/income/
Extending APC framework to generate detailed historical smoking patterns by birth cohort in

- Brazil
- Mexico (underway)
- Argentina (underway)

Poster Session 4
Poster # 048
Today 4:45-6:15pm
Research and policy planning strategy

Inputs
- Population data
- Smoking parameters
 - Mortality, morbidity rates
 - Policy levels and effects

Outputs
- Status quo projections
- Disparities trends
- Health outcomes
- Policy comparisons

Decision-making
- Resource allocation
- Priority-setting
- Health equity goals
- Policy implementation

Modeling

Translation
3. Build data infrastructure to monitor health equity progress

- Surveillance and data infrastructure deficits hinder health equity research and policy progress
- Smoking parameters will soon be publicly available for download at apps.cisnetsmokingparameters.org
- Detailed cohort-specific inputs can support modeling research for priority populations
- Opportunities for APC framework to be extended to other countries with limited data
Looking Ahead

• E-cigarette use in models by mental health status
Looking Ahead

• Higher e-cig and dual use among people with MDEs and SPD
Looking Ahead

- E-cigarette use in models by mental health status
- E-cigarette and cigar use by race/ethnicity, education
- COVID-19 impacts on tobacco use behaviors
- Reduced nicotine cigarette policy and implications for health equity
- Extend models to include morbidity and economic outcomes
- Model diverse populations as the rule, not the exception
- Health equity as the tobacco endgame
CISNET Supplement Authors

• Pianpian Cao
• Maki Inoue-Choi
• Eric ‘Rocky’ J Feuer
• Nancy L Fleischer
• Neal D Freedman
• Theodore R Holford
• Mohammed A Jaffri
• Jihyoun Jeon

• David T Levy
• Lisa McKay
• Timothy S McNeel
• Rafael Meza
• Yoonseo Mok
• Luz Maria Sanchez-Romero
• Miriam C Souza
• André S Szklo

Guest Editor:
Dennis R. Trinidad
Thank You

Mentors & Collaborators
• Rafael Meza
• Ken Warner
• Jihyoun Jeon
• Ted Holford
• David Levy
• David Fiellin
• Abby Friedman
• Susan Busch
• Kara Zivin
• Peter Jacobson
• CAsToR & CISNET colleagues
• Friends at CTP
• and many, many more..

Support & Community
• Matty
• Chosen Family
• Tamily